Second Harmonic Generation Studies of Interfacial Strain Engineering in BaZr0.2Ti0.8O3

Yuhang Ren*, Piyali Maity, David Ascienzo, Onur Kurt, H. Cheng, Jun Ouyang

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

Özet

Film ferroelectrics demonstrate large breakdown strength, high energy density, and many unique phenomena not found in bulk materials. In this investigation, a rhombohedral BaZr0.2Ti0.8O3 (BZT) solid solution and various film-substrate misfit strains are utilized to optimize the energy storage performance of ferroelectric thick films. Optical second harmonic generation is applied in both reflection and transmission geometries to reveal the renovation of entangled rhombohedral and tetragonal phases in the BZT films under compressive misfit strains. It is shown that the interfacial strain between the BZT film and substrate introduces the tetragonal domains. The competition between the tetragonal and rhombohedral phases creates the self-assembled, anisotropically strained morphotropic structures to effectively accommodate the elastic and electrical stress fields through inside the thick BZT film. The BZT films demonstrate exceptional energy storage performance because of the adaptable nano-domain structure within the bulk of the BZT films and may be engineered to optimize the superior performance of BZT films in energy storage.

Orijinal dilİngilizce
Makale numarası2300497
DergiAdvanced Electronic Materials
Hacim9
Basın numarası11
DOI'lar
Yayın durumuYayınlandı - Kas 2023
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2023 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH.

Finansman

The work at Hunter College was supported by the Air Force Office of Scientific Research (Grant No. FA9550-20-1-0388) and PSC-CUNY (Grant No. 63728-00 51). J. Ouyang acknowledges the partial financial support from the National Natural Science Foundation of China (Project Grant nos. 51772175), and the Jinan City Science and Technology Bureau (Grant No. 2021GXRC055). H. Cheng acknowledges the partial support from the Jiangsu Province NSFC (Grant No. BK20180764). The work at Hunter College was supported by the Air Force Office of Scientific Research (Grant No. FA9550‐20‐1‐0388) and PSC‐CUNY (Grant No. 63728‐00 51). J. Ouyang acknowledges the partial financial support from the National Natural Science Foundation of China (Project Grant nos. 51772175), and the Jinan City Science and Technology Bureau (Grant No. 2021GXRC055). H. Cheng acknowledges the partial support from the Jiangsu Province NSFC (Grant No. BK20180764).

FinansörlerFinansör numarası
Jiangsu Province NSFCBK20180764
PSC‐CUNY63728‐00 51
Air Force Office of Scientific ResearchFA9550‐20‐1‐0388
Jinan Science and Technology Bureau2021GXRC055
Professional Staff Congress and City University of New York
National Natural Science Foundation of China51772175

    Parmak izi

    Second Harmonic Generation Studies of Interfacial Strain Engineering in BaZr0.2Ti0.8O3' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap