Özet
Film ferroelectrics demonstrate large breakdown strength, high energy density, and many unique phenomena not found in bulk materials. In this investigation, a rhombohedral BaZr0.2Ti0.8O3 (BZT) solid solution and various film-substrate misfit strains are utilized to optimize the energy storage performance of ferroelectric thick films. Optical second harmonic generation is applied in both reflection and transmission geometries to reveal the renovation of entangled rhombohedral and tetragonal phases in the BZT films under compressive misfit strains. It is shown that the interfacial strain between the BZT film and substrate introduces the tetragonal domains. The competition between the tetragonal and rhombohedral phases creates the self-assembled, anisotropically strained morphotropic structures to effectively accommodate the elastic and electrical stress fields through inside the thick BZT film. The BZT films demonstrate exceptional energy storage performance because of the adaptable nano-domain structure within the bulk of the BZT films and may be engineered to optimize the superior performance of BZT films in energy storage.
Orijinal dil | İngilizce |
---|---|
Makale numarası | 2300497 |
Dergi | Advanced Electronic Materials |
Hacim | 9 |
Basın numarası | 11 |
DOI'lar | |
Yayın durumu | Yayınlandı - Kas 2023 |
Harici olarak yayınlandı | Evet |
Bibliyografik not
Publisher Copyright:© 2023 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH.
Finansman
The work at Hunter College was supported by the Air Force Office of Scientific Research (Grant No. FA9550-20-1-0388) and PSC-CUNY (Grant No. 63728-00 51). J. Ouyang acknowledges the partial financial support from the National Natural Science Foundation of China (Project Grant nos. 51772175), and the Jinan City Science and Technology Bureau (Grant No. 2021GXRC055). H. Cheng acknowledges the partial support from the Jiangsu Province NSFC (Grant No. BK20180764). The work at Hunter College was supported by the Air Force Office of Scientific Research (Grant No. FA9550‐20‐1‐0388) and PSC‐CUNY (Grant No. 63728‐00 51). J. Ouyang acknowledges the partial financial support from the National Natural Science Foundation of China (Project Grant nos. 51772175), and the Jinan City Science and Technology Bureau (Grant No. 2021GXRC055). H. Cheng acknowledges the partial support from the Jiangsu Province NSFC (Grant No. BK20180764).
Finansörler | Finansör numarası |
---|---|
Jiangsu Province NSFC | BK20180764 |
PSC‐CUNY | 63728‐00 51 |
Air Force Office of Scientific Research | FA9550‐20‐1‐0388 |
Jinan Science and Technology Bureau | 2021GXRC055 |
Professional Staff Congress and City University of New York | |
National Natural Science Foundation of China | 51772175 |