Özet
Narrow-band Electronic Support receivers cannot detect radar signals in broad frequency ranges of the electromagnetic spectrum simultaneously. Hence, a frequency spectrum scanning strategy has to be planned. Commonly, this strategy is determined based on prior knowledge about possible threats. However, in an environment where the parameters of the radars are unconfirmed, it could be planned via learning-based representations. In previous researches, this sensor scheduling problem was modeled as a dynamical system by Predictive State Representations. Moreover, Singular Value Thresholding (SVT) algorithm is used in the subspace identification part to cope with the complexity of the system. In this work, We propose a scanning strategy learning method based on Robust Principal Component Analysis (RPCA).
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | Artificial Intelligence and Machine Learning in Defense Applications III |
Editörler | Judith Dijk |
Yayınlayan | SPIE |
ISBN (Elektronik) | 9781510645844 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2021 |
Etkinlik | Artificial Intelligence and Machine Learning in Defense Applications III 2021 - Virtual, Online, Spain Süre: 13 Eyl 2021 → 17 Eyl 2021 |
Yayın serisi
Adı | Proceedings of SPIE - The International Society for Optical Engineering |
---|---|
Hacim | 11870 |
ISSN (Basılı) | 0277-786X |
ISSN (Elektronik) | 1996-756X |
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | Artificial Intelligence and Machine Learning in Defense Applications III 2021 |
---|---|
Ülke/Bölge | Spain |
Şehir | Virtual, Online |
Periyot | 13/09/21 → 17/09/21 |
Bibliyografik not
Publisher Copyright:© 2021 SPIE