Robust Adaptive Kalman Filter for estimation of UAV dynamics in the presence of sensor/actuator faults

Chingiz Hajiyev*, Halil Ersin Soken

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

111 Atıf (Scopus)

Özet

In this paper a Robust Adaptive Kalman Filter (RAKF) is introduced. The RAKF incorporates measurement and process noise covariance adaptation procedures (R and Q adaptation respectively) and utilizes adaptive factors in order to adapt itself against sensor/actuator faults. Thus the filter stands robust against the faults and even in case of sensor/actuator failure keeps providing accurate estimation results. In a single algorithm, the RAKF detects the fault, isolates it and applies the required adaptation process such that the estimation characteristic is not deteriorated. The performance of the proposed RAKF is investigated by simulations for the state estimation procedure of an Unmanned Aerial Vehicle.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)376-383
Sayfa sayısı8
DergiAerospace Science and Technology
Hacim28
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - Tem 2013

Parmak izi

Robust Adaptive Kalman Filter for estimation of UAV dynamics in the presence of sensor/actuator faults' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap