TY - JOUR
T1 - Risk and impact-centered non-stationary signal analysis based on fault signatures for Djibouti power system
AU - Nasser Mohamed, Yasmin
AU - Isman Okieh, Oubah
AU - Seker, Serhat
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
PY - 2024/10
Y1 - 2024/10
N2 - Power system engineers’ intention is to produce power, transport it, and finally distribute it to customers under safe and reliable operating conditions to provide continuous and stable electrical energy. However, this goal is often hindered by unexpected faults that can lead to system breakdown. As a result, power system modeling is an effective technique which helps the analysis of power systems. Besides this technique, mathematical methods provide comprehensible information about the system's state. Furthermore, various studies have employed different techniques to detect electrical faults. In this paper, electrical faults are selected using a risk and impact approach, and fault characteristics are found using the Short-time Fourier transform. The case study is the Djibouti power network, and it is modeled with all real parameters using MATLAB-SIMULINK software. Following that, several fault scenarios were run, and the analysis was conducted using the proposed mathematical method. Ultimately, the simulation results indicate that the most critical faults are single-line-to-ground and double-line-to-ground. Hence, the extraction of signal features for these fault types is carried out. These faults have a high short circuit current, which can cause damage to the electrical network, and while clearing the fault, the oscillatory transient state appears with low-frequency components. These frequency components significantly affect power quality, thereby reducing the system’s performance.
AB - Power system engineers’ intention is to produce power, transport it, and finally distribute it to customers under safe and reliable operating conditions to provide continuous and stable electrical energy. However, this goal is often hindered by unexpected faults that can lead to system breakdown. As a result, power system modeling is an effective technique which helps the analysis of power systems. Besides this technique, mathematical methods provide comprehensible information about the system's state. Furthermore, various studies have employed different techniques to detect electrical faults. In this paper, electrical faults are selected using a risk and impact approach, and fault characteristics are found using the Short-time Fourier transform. The case study is the Djibouti power network, and it is modeled with all real parameters using MATLAB-SIMULINK software. Following that, several fault scenarios were run, and the analysis was conducted using the proposed mathematical method. Ultimately, the simulation results indicate that the most critical faults are single-line-to-ground and double-line-to-ground. Hence, the extraction of signal features for these fault types is carried out. These faults have a high short circuit current, which can cause damage to the electrical network, and while clearing the fault, the oscillatory transient state appears with low-frequency components. These frequency components significantly affect power quality, thereby reducing the system’s performance.
KW - Djibouti power grid
KW - Power system
KW - Short-time Fourier transform
KW - Simulink model
KW - Three-phase fault
UR - http://www.scopus.com/inward/record.url?scp=85188910508&partnerID=8YFLogxK
U2 - 10.1007/s00202-024-02322-x
DO - 10.1007/s00202-024-02322-x
M3 - Article
AN - SCOPUS:85188910508
SN - 0948-7921
VL - 106
SP - 5953
EP - 5966
JO - Electrical Engineering
JF - Electrical Engineering
IS - 5
ER -