Reliability Based Design Optimization of a Supersonic Engine Inlet

Hüseyin Emre Tekaslan, Rumed Imrak, Melike Nikbay

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

4 Atıf (Scopus)

Özet

This paper presents risk-based design optimization of a supersonic axisymmetric outwardturning engine inlet with geometric uncertainties by exploiting a convolutional neural network. Due to the exorbitant computational burden, a convolutional neural network-based surrogate model is implemented to be used in the prediction of engine performance parameters which are total pressure recovery and mass flow ratio. To generate a dataset, 256 unique configurations for the inlet are parametrically designed in Engineering Sketch Pad while the SU2 Suite is used to obtain a solution of supersonic flow domains. For sought-after optimum reliable design, gradient-free particle swarm optimization is incorporated with a first-order reliability method. Inlet buzz is considered as the critical phenomenon in computations of the reliability of the engine while the maximum probability of failure is limited with 10−7 in the optimum inlet configuration.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıAIAA Propulsion and Energy Forum, 2021
YayınlayanAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Basılı)9781624106118
DOI'lar
Yayın durumuYayınlandı - 2021
EtkinlikAIAA Propulsion and Energy Forum, 2021 - Virtual, Online
Süre: 9 Ağu 202111 Ağu 2021

Yayın serisi

AdıAIAA Propulsion and Energy Forum, 2021

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???AIAA Propulsion and Energy Forum, 2021
ŞehirVirtual, Online
Periyot9/08/2111/08/21

Bibliyografik not

Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.

Parmak izi

Reliability Based Design Optimization of a Supersonic Engine Inlet' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap