Relationships between identities for quantum bernstein bases and formulas for hypergeometric series

Fatma Zürnacı, Ron Goldman, Plamen Simeonov

Araştırma sonucu: Dergiye katkıMakalebilirkişi

1 Atıf (Scopus)

Özet

Two seemingly disparate mathematical entities – quantum Bernstein bases and hypergeometric series – are revealed to be intimately related. The partition of unity property for quantum Bernstein bases is shown to be equivalent to the Chu-Vandermonde formula for hypergeometric series, and the Marsden identity for quantum Bernstein bases is shown to be equivalent to the Pfaff-Saalschütz formula for hypergeometric series. The equivalence of the q-versions of these formulas and identities is also demonstrated.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)2485-2494
Sayfa sayısı10
DergiFilomat
Hacim34
Basın numarası8
DOI'lar
Yayın durumuYayınlandı - 2020

Bibliyografik not

Publisher Copyright:
© 2020, University of Nis. All rights reserved.

Parmak izi

Relationships between identities for quantum bernstein bases and formulas for hypergeometric series' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap