Recovery of impenetrable rough surface profiles via CNN-based deep learning architecture

İzde Aydin, Güven Budak, Ahmet Sefer*, Ali Yapar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

7 Atıf (Scopus)

Özet

In this paper, a convolutional neural network (CNN)-based deep learning (DL) architecture for the solution of an electromagnetic inverse problem related to imaging of the shape of the perfectly electric conducting (PEC) rough surfaces is addressed. The rough surface is illuminated by a plane wave and scattered field data is obtained synthetically through the numerical solution of surface integral equations. An effective CNN-DL architecture is implemented through the modelling of the rough surface variation in terms of convenient spline type base functions. The algorithm is numerically tested with various scenarios including amplitude only data and shown that it is very effective and useful.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)5658-5685
Sayfa sayısı28
DergiInternational Journal of Remote Sensing
Hacim43
Basın numarası15-16
DOI'lar
Yayın durumuYayınlandı - 2022

Bibliyografik not

Publisher Copyright:
© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Parmak izi

Recovery of impenetrable rough surface profiles via CNN-based deep learning architecture' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap