TY - JOUR
T1 - Recent Advances in Cyclodextrin-Based Nanoscale Drug Delivery Systems
AU - Topuz, Fuat
AU - Uyar, Tamer
N1 - Publisher Copyright:
© 2024 Wiley Periodicals LLC.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - Cyclodextrins (CDs) belong to a class of cyclic oligosaccharides characterized by their toroidal shape consisting of glucose units linked via α-1,4-glycosidic bonds. This distinctive toroidal shape exhibits a dual nature, comprising a hydrophobic interior and a hydrophilic exterior, making CDs highly versatile in various pharmaceutical products. They serve multiple roles: they act as solubilizers, stabilizers, controlled release promoters, enhancers of drug bioavailability, and effective means of masking undesirable tastes and odors. Taking advantage of these inherent benefits, CDs have been integrated into numerous nanoscale drug delivery systems. The resulting nanomaterials exploit the exceptional properties of CDs, including their ability to solubilize hydrophobic drugs for substantial drug loading, engage in supramolecular complexation for engineered nanomaterials, increase bioavailability for improved therapeutic efficacy, stabilize labile drugs, and exhibit biocompatibility and versatility. This paper compiles recent studies on CD functional nanoscale drug delivery platforms. First, we described the physicochemical and toxicological aspects of CDs, CD/drug inclusion complexation, and their impact on improving drug bioavailability. We then summarized applications for CD-functional nano delivery systems based on polymeric, hybrid, lipid-based nanoparticles, and CD-based nanofibers. Particular interest was in the targeted applications and the function of the CD molecules used. In most applications, CD molecules were used for drug solubilization and loading, while in some studies, CD molecules were employed for supramolecular complexation to construct nanoscale drug delivery systems. Finally, the review concludes with a thoughtful consideration of the current challenges and outlook.
AB - Cyclodextrins (CDs) belong to a class of cyclic oligosaccharides characterized by their toroidal shape consisting of glucose units linked via α-1,4-glycosidic bonds. This distinctive toroidal shape exhibits a dual nature, comprising a hydrophobic interior and a hydrophilic exterior, making CDs highly versatile in various pharmaceutical products. They serve multiple roles: they act as solubilizers, stabilizers, controlled release promoters, enhancers of drug bioavailability, and effective means of masking undesirable tastes and odors. Taking advantage of these inherent benefits, CDs have been integrated into numerous nanoscale drug delivery systems. The resulting nanomaterials exploit the exceptional properties of CDs, including their ability to solubilize hydrophobic drugs for substantial drug loading, engage in supramolecular complexation for engineered nanomaterials, increase bioavailability for improved therapeutic efficacy, stabilize labile drugs, and exhibit biocompatibility and versatility. This paper compiles recent studies on CD functional nanoscale drug delivery platforms. First, we described the physicochemical and toxicological aspects of CDs, CD/drug inclusion complexation, and their impact on improving drug bioavailability. We then summarized applications for CD-functional nano delivery systems based on polymeric, hybrid, lipid-based nanoparticles, and CD-based nanofibers. Particular interest was in the targeted applications and the function of the CD molecules used. In most applications, CD molecules were used for drug solubilization and loading, while in some studies, CD molecules were employed for supramolecular complexation to construct nanoscale drug delivery systems. Finally, the review concludes with a thoughtful consideration of the current challenges and outlook.
KW - cyclodextrin
KW - drug delivery
KW - electrospinning
KW - graphene
KW - liposomes
KW - MOFs
KW - nanofibers
KW - nanoparticles
KW - quantum dots
UR - http://www.scopus.com/inward/record.url?scp=85208146362&partnerID=8YFLogxK
U2 - 10.1002/wnan.1995
DO - 10.1002/wnan.1995
M3 - Article
C2 - 39480078
AN - SCOPUS:85208146362
SN - 1939-5116
VL - 16
JO - Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
JF - Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
IS - 6
M1 - e1995
ER -