Real-time traffic classification based on cosine similarity using sub-application vectors

Cihangir Beşiktaş*, Haci Ali Mantar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

4 Atıf (Scopus)

Özet

Internet traffic classification has a critical role on network monitoring, quality of service, intrusion detection, network security and trend analysis. The conventional port-based method is ineffective due to dynamic port usage and masquerading techniques. Besides, payload-based method suffers from heavy load and encryption. Due to these facts, machine learning based statistical approaches have become the new trend for the network measurement community. In this short paper, we propose a new statistical approach based on DBSCAN clustering and weighted cosine similarity. Our experimental test results show that the proposed approach achieves very high accuracy.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıTraffic Monitoring and Analysis - 4th International Workshop, TMA 2012, Proceedings
Sayfalar89-92
Sayfa sayısı4
DOI'lar
Yayın durumuYayınlandı - 2012
Harici olarak yayınlandıEvet
Etkinlik4th International Workshop on Traffic Monitoring and Analysis, TMA 2012 - Vienna, Austria
Süre: 12 Mar 201212 Mar 2012

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Hacim7189 LNCS
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???4th International Workshop on Traffic Monitoring and Analysis, TMA 2012
Ülke/BölgeAustria
ŞehirVienna
Periyot12/03/1212/03/12

Parmak izi

Real-time traffic classification based on cosine similarity using sub-application vectors' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap