RamanFormer: A Transformer-Based Quantification Approach for Raman Mixture Components

Onur Can Koyun*, Reyhan Kevser Keser, Safa Onur Şahin, Damla Bulut, Mustafa Yorulmaz, Veysel Yücesoy, Behçet Uğur Töreyin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

4 Atıf (Scopus)

Özet

Raman spectroscopy is a noninvasive technique to identify materials by their unique molecular vibrational fingerprints. However, distinguishing and quantifying components in mixtures present challenges due to overlapping spectra, especially when components share similar features. This study presents “RamanFormer”, a transformer-based model designed to enhance the analysis of Raman spectroscopy data. By effectively managing sequential data and integrating self-attention mechanisms, RamanFormer identifies and quantifies components in chemical mixtures with high precision, achieving a mean absolute error of 1.4% and a root mean squared error of 1.6%, significantly outperforming traditional methods such as least squares, MLP, VGG11, and ResNet50. Tested extensively on binary and ternary mixtures under varying conditions, including noise levels with a signal-to-noise ratio of up to 10 dB, RamanFormer proves to be a robust tool, improving the reliability of material identification and broadening the application of Raman spectroscopy in fields, such as material science, forensics, and biomedical diagnostics.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)23241-23251
Sayfa sayısı11
DergiACS Omega
Hacim9
Basın numarası22
DOI'lar
Yayın durumuYayınlandı - 4 Haz 2024

Bibliyografik not

Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.

Parmak izi

RamanFormer: A Transformer-Based Quantification Approach for Raman Mixture Components' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap