Q-Adaptation of SVD-aided UKF Algorithm for Nanosatellite Attitude Estimation

Araştırma sonucu: ???type-name???Makalebilirkişi

6 Atıf (Scopus)

Özet

In this study, we propose process noise covariance matrix adaptation (Q-adaptation) for the Singular Value Decomposition (SVD) aided Unscented Kalman Filter (UKF) algorithm. The main aim is to make the algorithm adaptive against the changes in the process noise covariance. The SVD-aided Adaptive UKF (SaAUKF) estimates the attitude and attitude rate of a nanosatellite. We implement the SVD method in the algorithm's first phase using magnetometer and sun sensor measurements. It estimates the attitude of the nanosatellite giving one estimate at a single-frame. Then these estimated attitude terms are fed into the Adaptive UKF. The SaAUKF algorithm estimates the spacecraft attitude rates and provides finer attitude estimations. We investigate the performance of the algorithm when the process noise increases, which is very likely as a result of changes in the spacecraft dynamics in different environments. The results are compared with those of a non-Q-adaptive version of the algorithm.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)8273-8278
Sayfa sayısı6
DergiIFAC-PapersOnLine
Hacim50
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - Tem 2017

Bibliyografik not

Publisher Copyright:
© 2017

Parmak izi

Q-Adaptation of SVD-aided UKF Algorithm for Nanosatellite Attitude Estimation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap