TY - JOUR
T1 - Preparation of multiple-cation α-SiAlON ceramics containing lanthanum
AU - Mandal, Hasan
AU - Hoffmann, Michael J.
PY - 1999
Y1 - 1999
N2 - Until recently, it was accepted that Ce3+ cations, with an ionic radius (r) of 1.03 Å, were too large to form an α-SiAlON structure. However, more-recent studies have shown that cerium cations can be incorporated into α-SiAlON via quenching at a rate of 600°C/min, after sintering at 1800°C. Thus far, no α-SiAlON formation has been observed for La3+ cations with r = 1.06 Å. In the present work, the possibility of having the La3+ species as a dopant cation in α-SiAlON has been investigated by using La2O3 alone or in equimolar mixtures with CaO or Yb2O3. The resulting materials have been heat-treated at a temperature of 1450°C for up to 720 h to devitrify the grain-boundary glass into crystalline phases and also to observe the α → β SiAlON transformation. X-ray diffractometry on samples that were densified with single cations revealed that the La3+ cation alone does not form an α-SiAlON; rather, it forms the N-phase (La3Si8O4N11) with a β-SiAlON phase. In the case of multiple cations, α-SiAlON was observed only as a matrix phase. Energy-dispersive X-ray measurements have proven that La3+ cations can be accommodated into the α-SiAlON structure and this structure also does not transform to β-SiAlON at lower temperatures.
AB - Until recently, it was accepted that Ce3+ cations, with an ionic radius (r) of 1.03 Å, were too large to form an α-SiAlON structure. However, more-recent studies have shown that cerium cations can be incorporated into α-SiAlON via quenching at a rate of 600°C/min, after sintering at 1800°C. Thus far, no α-SiAlON formation has been observed for La3+ cations with r = 1.06 Å. In the present work, the possibility of having the La3+ species as a dopant cation in α-SiAlON has been investigated by using La2O3 alone or in equimolar mixtures with CaO or Yb2O3. The resulting materials have been heat-treated at a temperature of 1450°C for up to 720 h to devitrify the grain-boundary glass into crystalline phases and also to observe the α → β SiAlON transformation. X-ray diffractometry on samples that were densified with single cations revealed that the La3+ cation alone does not form an α-SiAlON; rather, it forms the N-phase (La3Si8O4N11) with a β-SiAlON phase. In the case of multiple cations, α-SiAlON was observed only as a matrix phase. Energy-dispersive X-ray measurements have proven that La3+ cations can be accommodated into the α-SiAlON structure and this structure also does not transform to β-SiAlON at lower temperatures.
UR - http://www.scopus.com/inward/record.url?scp=0001018222&partnerID=8YFLogxK
U2 - 10.1111/j.1151-2916.1999.tb01750.x
DO - 10.1111/j.1151-2916.1999.tb01750.x
M3 - Article
AN - SCOPUS:0001018222
SN - 0002-7820
VL - 82
SP - 229
EP - 232
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 1
ER -