Prediction of exchange rates with machine learning

Ahmet Goncu*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

5 Atıf (Scopus)

Özet

In this study a macroeconomic model is considered to predict the next month’s monthly average exchange rates via machine learning based regression methods including the Ridge, decision tree regression, support vector regression and linear regression. The model incorporates the domestic money supply, real interest rates, Federal Funds rate of the USA, and the last month’s monthly average exchange rate to predict the next month’s exchange rate. Monthly data with 148 observations from the US Dollar and Turkish Lira exchange rates are considered for the empirical testing of the model. Empirical results show that the Ridge regression offers accurate estimation for investors or policy makers with relative errors less than 60 basis points. Policy makers can obtain point estimates and confidence intervals for analyzing the effects of interest rate cuts on the exchange rates.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings of 2019 International Conference on Artificial Intelligence, Information Processing and Cloud Computing, AIIPCC 2019
EditörlerJoao Manuel R.S. Tavares
YayınlayanAssociation for Computing Machinery
ISBN (Elektronik)9781450376334
DOI'lar
Yayın durumuYayınlandı - 19 Ara 2019
Harici olarak yayınlandıEvet
Etkinlik2019 International Conference on Artificial Intelligence, Information Processing and Cloud Computing, AIIPCC 2019 - Sanya, China
Süre: 19 Ara 201921 Ara 2019

Yayın serisi

AdıACM International Conference Proceeding Series

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2019 International Conference on Artificial Intelligence, Information Processing and Cloud Computing, AIIPCC 2019
Ülke/BölgeChina
ŞehirSanya
Periyot19/12/1921/12/19

Bibliyografik not

Publisher Copyright:
© 2019 Association for Computing Machinery.

Finansman

Our thanks to the Research Institute of Quantitative Finance at Xi’an Jiaotong Liverpool University and the Hedge Fund Research Center at Shanghai Advanced Institute of Finance, Shanghai Jiaotong University in support of this research project.

FinansörlerFinansör numarası
Hedge Fund Research Center at Shanghai Advanced Institute of Finance
Shanghai Jiao Tong University

    Parmak izi

    Prediction of exchange rates with machine learning' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap