Prediction of cryptocurrency returns using machine learning

Erdinc Akyildirim, Ahmet Goncu, Ahmet Sensoy*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

131 Atıf (Scopus)

Özet

In this study, the predictability of the most liquid twelve cryptocurrencies are analyzed at the daily and minute level frequencies using the machine learning classification algorithms including the support vector machines, logistic regression, artificial neural networks, and random forests with the past price information and technical indicators as model features. The average classification accuracy of four algorithms are consistently all above the 50% threshold for all cryptocurrencies and for all the timescales showing that there exists predictability of trends in prices to a certain degree in the cryptocurrency markets. Machine learning classification algorithms reach about 55–65% predictive accuracy on average at the daily or minute level frequencies, while the support vector machines demonstrate the best and consistent results in terms of predictive accuracy compared to the logistic regression, artificial neural networks and random forest classification algorithms.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)3-36
Sayfa sayısı34
DergiAnnals of Operations Research
Hacim297
Basın numarası1-2
DOI'lar
Yayın durumuYayınlandı - Şub 2021
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.

Parmak izi

Prediction of cryptocurrency returns using machine learning' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap