Predicting oil prices: A comparative analysis of machine learning and image recognition algorithms for trend prediction

Ahmet Göncü*, Tolga U. Kuzubaş, Burak Saltoğlu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

Özet

This paper investigates the effectiveness of machine learning algorithms, including logistic regression, artificial neural networks, support vector machines, gradient boosting algorithms (XGBoost, ExtraTrees), random forests, and convolutional neural network (CNN) for trend prediction of daily spot oil prices across horizons of 1 to 8 days. We utilize a comprehensive set of features, including technical indicators, financial data, and volatility measures, to predict trends in closing prices. Our results reveal that the CNN model significantly outperforms other algorithms. This superior performance likely stems from CNN's ability to capture visual patterns in price movements, potentially mimicking how traders identify trends.

Orijinal dilİngilizce
Makale numarası105874
DergiFinance Research Letters
Hacim67
DOI'lar
Yayın durumuYayınlandı - Eyl 2024

Bibliyografik not

Publisher Copyright:
© 2024 Elsevier Inc.

Parmak izi

Predicting oil prices: A comparative analysis of machine learning and image recognition algorithms for trend prediction' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap