Perceptual audio watermarking by learning in wavelet domain

Bilge Gunsel*, Serap Kirbiz

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

4 Atıf (Scopus)

Özet

Conventional blind watermark (WM) decoding schemes use correlation-based decision rules because of their simplicity. Drawback of the correlator decoders is their performance relies on the decision threshold. Existence of an undesirable correlation between the WM data embedded through a secret key and the host signal makes the decision threshold specification harder, especially in noisy channels. To overcome this drawback, we propose a SVM-based decoding scheme which is capable of learning the embedded WM data in wavelet domain. It is shown that both decoding and detection performance of the introduced WM extraction technique outperforms state-of-the-art correlation-based schemes. Test results demonstrate that learning in the wavelet domain improves robustness to attacks while reducing complexity.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings - 18th International Conference on Pattern Recognition, ICPR 2006
Sayfalar383-386
Sayfa sayısı4
DOI'lar
Yayın durumuYayınlandı - 2006
Etkinlik18th International Conference on Pattern Recognition, ICPR 2006 - Hong Kong, China
Süre: 20 Ağu 200624 Ağu 2006

Yayın serisi

AdıProceedings - International Conference on Pattern Recognition
Hacim3
ISSN (Basılı)1051-4651

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???18th International Conference on Pattern Recognition, ICPR 2006
Ülke/BölgeChina
ŞehirHong Kong
Periyot20/08/0624/08/06

Parmak izi

Perceptual audio watermarking by learning in wavelet domain' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap