Orbital stability of periodic standing waves for the cubic fractional nonlinear Schrödinger equation

Gabriel E. Bittencourt Moraes, Handan Borluk, Guilherme de Loreno, Gulcin M. Muslu, Fábio Natali*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

4 Atıf (Scopus)

Özet

In this paper, the existence and orbital stability of the periodic standing wave solutions for the nonlinear fractional Schrödinger (fNLS) equation with cubic nonlinearity is studied. The existence is determined by using a minimizing constrained problem in the complex setting and it is showed that the corresponding real solution is always positive. The orbital stability is proved by combining some tools regarding the oscillation theorem for fractional Hill operators and the Vakhitov-Kolokolov condition, well known for Schrödinger equations. We then perform a numerical approach to generate the periodic standing wave solutions of the fNLS equation by using the Petviashvili's iteration method. We also investigate the Vakhitov-Kolokolov condition numerically which cannot be obtained analytically for some values of the order of the fractional derivative.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)263-291
Sayfa sayısı29
DergiJournal of Differential Equations
Hacim341
DOI'lar
Yayın durumuYayınlandı - 25 Ara 2022

Bibliyografik not

Publisher Copyright:
© 2022 Elsevier Inc.

Finansman

G. de Loreno and G.E.B. Moraes are supported by the regular doctorate scholarship from CAPES/Brazil. F. Natali is partially supported by Fundação Araucária /Brazil (grant 002/2017 ), CNPq /Brazil (grant 303907/2021-5 ) and CAPES MathAmSud (grant 88881.520205/2020-01 ).

FinansörlerFinansör numarası
CAPES MathAmSud88881.520205/2020-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico303907/2021-5
Fundação Araucária002/2017

    Parmak izi

    Orbital stability of periodic standing waves for the cubic fractional nonlinear Schrödinger equation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap