Özet
The paper proposes an innovative approach in solving the fault detection problem of sewerage treatment plant machinery. The proposed approach treats the fault detection data with the class decomposition problem, ensuring that a classification algorithm overlooks no disjunct instances. As the class decomposition technique requires heavy customization to each class of instances in every data set, Grey Wolf Optimizer is used to determine the appropriate clustering method with the appropriate setting for each class of instances. The proposed approach is tested on real-life sensor data from a sewerage treatment plant, and the results show that here proposed approach overshadows several manually proposed class decomposition methods.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | 21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021 - Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 15-20 |
Sayfa sayısı | 6 |
ISBN (Elektronik) | 9781665426848 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2021 |
Etkinlik | 21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021 - Budapest, Hungary Süre: 18 Kas 2021 → 20 Kas 2021 |
Yayın serisi
Adı | 21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021 - Proceedings |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021 |
---|---|
Ülke/Bölge | Hungary |
Şehir | Budapest |
Periyot | 18/11/21 → 20/11/21 |
Bibliyografik not
Publisher Copyright:© 2021 IEEE.
Finansman
ACKNOWLEDGMENT This research was funded by the Slovenian Research Agency (research cores funding Nos. P2-0057 and P5-0027).
Finansörler | Finansör numarası |
---|---|
Javna Agencija za Raziskovalno Dejavnost RS | P2-0057, P5-0027 |