Optimized Class Decomposition for Fault Detection

Saso Karakatic*, Dusan Fister, Omer Faruk Beyca, Iztok Fister

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

The paper proposes an innovative approach in solving the fault detection problem of sewerage treatment plant machinery. The proposed approach treats the fault detection data with the class decomposition problem, ensuring that a classification algorithm overlooks no disjunct instances. As the class decomposition technique requires heavy customization to each class of instances in every data set, Grey Wolf Optimizer is used to determine the appropriate clustering method with the appropriate setting for each class of instances. The proposed approach is tested on real-life sensor data from a sewerage treatment plant, and the results show that here proposed approach overshadows several manually proposed class decomposition methods.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar15-20
Sayfa sayısı6
ISBN (Elektronik)9781665426848
DOI'lar
Yayın durumuYayınlandı - 2021
Etkinlik21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021 - Budapest, Hungary
Süre: 18 Kas 202120 Kas 2021

Yayın serisi

Adı21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???21st IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2021
Ülke/BölgeHungary
ŞehirBudapest
Periyot18/11/2120/11/21

Bibliyografik not

Publisher Copyright:
© 2021 IEEE.

Finansman

ACKNOWLEDGMENT This research was funded by the Slovenian Research Agency (research cores funding Nos. P2-0057 and P5-0027).

FinansörlerFinansör numarası
Javna Agencija za Raziskovalno Dejavnost RSP2-0057, P5-0027

    Parmak izi

    Optimized Class Decomposition for Fault Detection' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap