Optimization of third-order discrete and differential inclusions described by polyhedral set-valued mappings

Elimhan N. Mahmudov*, Sevilay Demir, Özkan Değer

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

12 Atıf (Scopus)

Özet

The present paper is concerned with the necessary and sufficient conditions of optimality for third-order polyhedral optimization described by polyhedral discrete and differential inclusions (PDIs). In the first part of the paper, the discrete polyhedral problem (PDIs) is reduced to convex minimization problem and the necessary and sufficient condition for optimality is derived. Then the necessary and sufficient conditions of optimality for discrete-approximation problem (P)D are formulated using the transversality condition and approximation method for the continuous polyhedral problem (P)C governed by PDI. On the basis on the obtained results in Section 3, we prove the sufficient conditions of optimality for the problem (P)C. It turns out that the concerned method requires some special equivalence theorem, which allow us to make a bridge between (P)D and (P)C problems.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1831-1844
Sayfa sayısı14
DergiApplicable Analysis
Hacim95
Basın numarası9
DOI'lar
Yayın durumuYayınlandı - 1 Eyl 2016

Bibliyografik not

Publisher Copyright:
© 2015 Taylor & Francis.

Parmak izi

Optimization of third-order discrete and differential inclusions described by polyhedral set-valued mappings' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap