Optimization of the Hyperbolic Type Differential Inclusions Described by Polyhedral Set Valued Mappings

Gulseren Cicek*, Elimhan N. Mahmudov

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

In this paper, sufficient conditions for the optimal problem regarding polyhedral hyperbolic differentials are obtained. Necessary and sufficient conditions for the polyhedral hyperbolic discrete problem are derived using the polyhedral nature of the problem. By the discretization method of hyperbolic DFIs, the optimality conditions for the polyhedral discrete approximate problem are formulated in the form of the Mahmudov adjoint inclusions. We establish sufficient optimality conditions for the polyhedral DFIs of hyperbolic type. To the best of our knowledge, these results are new in the literature and use the discretization method when creating the optimality conditions for polyhedral hyperbolic DFIs. This method differs from formerly used methods because of its polyhedral structure.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2023 5th International Conference on Problems of Cybernetics and Informatics, PCI 2023
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798350319064
DOI'lar
Yayın durumuYayınlandı - 2023
Etkinlik5th International Conference on Problems of Cybernetics and Informatics, PCI 2023 - Baku, Azerbaijan
Süre: 28 Ağu 202330 Ağu 2023

Yayın serisi

Adı2023 5th International Conference on Problems of Cybernetics and Informatics, PCI 2023

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???5th International Conference on Problems of Cybernetics and Informatics, PCI 2023
Ülke/BölgeAzerbaijan
ŞehirBaku
Periyot28/08/2330/08/23

Bibliyografik not

Publisher Copyright:
© 2023 IEEE.

Parmak izi

Optimization of the Hyperbolic Type Differential Inclusions Described by Polyhedral Set Valued Mappings' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap