Özet
This paper is devoted to the duality of the Bolza problem with higher order differential inclusions and constraints on the initial point and state, which can make a significant contribution to the theory of optimal control. To this end in the form of Euler-Lagrange type inclusions and transversality conditions, sufficient optimality conditions are derived. It is remarkable that in a particular case the Euler-Lagrange inclusion coincides with the classical Euler-Poisson equation of the Calculus of Variations. The main idea of obtaining optimal conditions is locally conjugate mappings. It turns out that inclusions of the Euler-Lagrange type for both direct and dual problems are "duality relations". To implement this approach, sufficient optimality conditions and duality theorems are proved in the Mayer problem with a second-order linear optimal control problem and third-order polyhedral differential inclusions, reflecting the special features of the variational geometry of polyhedral sets.
Orijinal dil | İngilizce |
---|---|
Sayfa (başlangıç-bitiş) | 615-639 |
Sayfa sayısı | 25 |
Dergi | Journal of Nonlinear and Convex Analysis |
Hacim | 24 |
Basın numarası | 3 |
Yayın durumu | Yayınlandı - 2023 |
Bibliyografik not
Publisher Copyright:© 2023 Yokohama Publications. All rights reserved.