Optimization of second order evolution differential inclusions problem with phase constraints

Gülseren Çiçek, Elimhan Mahmudov

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

In this paper, we obtain optimality conditions for a problem of convex and non-convex second order evolution differential inclusions with phase constraints. Beginning with second order discrete inclusions problem, we derive necessary and sufficient optimality conditions for the discrete case. We use Locally Dual Mapping definition to derive necessary and sufficient conditions for the optimality of the discrete approximation problem. We prove equivalence theorems in order to obtain a relation between discrete approximation and continuous problems. Passing to the limit, sufficient conditions to the continuous optimal problem are established.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı3rd International Conference of Mathematical Sciences, ICMS 2019
EditörlerHuseyin Cakalli, Ljubisa D. R. Kocinac, Robin Harte, Valeria Neves Domingos Cavalcanti, Allaberen Ashyralyev, Izzet Sakalli, Ibrahim Canak, Ozay Gurtug, Marcelo Moreira Cavalcanti, Duran Turkoglu, Mujgan Tez, Hacer Sengul Kandemir, Sahin Uyaver, Kadri Ulas Akay, Ilhan Gul, Temha Erkoc Yilmazturk, Tugba Akyel, Filiz Cagatay Ucgun, Hakan Sahin
YayınlayanAmerican Institute of Physics Inc.
ISBN (Elektronik)9780735419308
DOI'lar
Yayın durumuYayınlandı - 6 Ara 2019
Etkinlik3rd International Conference of Mathematical Sciences, ICMS 2019 - Istanbul, Turkey
Süre: 4 Eyl 20198 Eyl 2019

Yayın serisi

AdıAIP Conference Proceedings
Hacim2183
ISSN (Basılı)0094-243X
ISSN (Elektronik)1551-7616

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???3rd International Conference of Mathematical Sciences, ICMS 2019
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot4/09/198/09/19

Bibliyografik not

Publisher Copyright:
© 2019 Author(s).

Parmak izi

Optimization of second order evolution differential inclusions problem with phase constraints' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap