Optimization of first-order impulsive differential inclusions and duality

Elimhan N. Mahmudov*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

Özet

The paper studies optimization problem described by first order evolution impulsive differential inclusions (DFIs); in terms of locally adjoint mappings in framework of convex and nonsmooth analysis we formulate sufficient conditions of optimality. Then we construct the dual problems for impulsive DFIs and prove duality results. It turns out that the Euler-Lagrange inclusions are "duality relations" for both the primal and dual problems, that is, if some pair of functions satisfies this relation, then one of them is a solution to the primal problem, and the other is a solution to a dual problem. At the end of the paper duality in optimal control problems with first order linear and polyhedral DFIs are considered, where the supremum is taken over the class of non-negative absolutely continuous functions.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)2387-2397
Sayfa sayısı11
DergiFilomat
Hacim38
Basın numarası7
DOI'lar
Yayın durumuYayınlandı - 2024

Bibliyografik not

Publisher Copyright:
© 2024, University of Nis. All rights reserved.

Parmak izi

Optimization of first-order impulsive differential inclusions and duality' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap