Optimal Control of Elliptic Type Polyhedral Inclusions

Elimhan N. Mahmudov, Dilara I. Mastaliyeva*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

The article considers an optimal control problem described by partial differential inclusions. At the same time, the problem with a polyhedral discrete inclusion is studied in detail. Using the Farkas theorem, locally adjoint mappings are calculated and necessary and sufficient conditions of optimality for polyhedral elliptic discrete inclusions are proved. After that, with the help of the polyhedral elliptic discretization method for the discrete-approximate problem, necessary and sufficient optimality conditions are formulated in the Euler-Lagrange form of the adjoint polyhedral inclusion. In addition, linear discrete-approximate and continuous optimal control problems of elliptic type are also considered. Using the polyhedral nature of the problem, optimality conditions for a polyhedral differential inclusion (DFI) are proved. An example is given to demonstrate the proposed approach.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2023 5th International Conference on Problems of Cybernetics and Informatics, PCI 2023
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798350319064
DOI'lar
Yayın durumuYayınlandı - 2023
Harici olarak yayınlandıEvet
Etkinlik5th International Conference on Problems of Cybernetics and Informatics, PCI 2023 - Baku, Azerbaijan
Süre: 28 Ağu 202330 Ağu 2023

Yayın serisi

Adı2023 5th International Conference on Problems of Cybernetics and Informatics, PCI 2023

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???5th International Conference on Problems of Cybernetics and Informatics, PCI 2023
Ülke/BölgeAzerbaijan
ŞehirBaku
Periyot28/08/2330/08/23

Bibliyografik not

Publisher Copyright:
© 2023 IEEE.

Parmak izi

Optimal Control of Elliptic Type Polyhedral Inclusions' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap