Optimal control of differential inclusions with endpoint constraints and duality

Elimhan N. Mahmudov*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

1 Atıf (Scopus)

Özet

The article considers a high-order optimal control problem and its dual problems described by high-order differential inclusions. In this regard, the established Euler–Lagrange type inclusion, containing the Euler–Poisson equation of the calculus of variations, is a sufficient optimality condition for a differential inclusion of a higher order. It is shown that the adjoint inclusion for the first-order differential inclusions, defined in terms of a locally adjoint mapping, coincides with the classical Euler–Lagrange inclusion. Then the duality theorems are proved.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)4717-4732
Sayfa sayısı16
DergiApplicable Analysis
Hacim102
Basın numarası17
DOI'lar
Yayın durumuYayınlandı - 2023

Bibliyografik not

Publisher Copyright:
© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Parmak izi

Optimal control of differential inclusions with endpoint constraints and duality' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap