On the stability of solitary wave solutions for a generalized fractional Benjamin-Bona-Mahony equation

Goksu Oruc*, Fábio Natali, Handan Borluk, Gulcin M. Muslu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

1 Atıf (Scopus)

Özet

In this paper we establish a rigorous spectral stability analysis for solitary waves associated to a generalized fractional Benjamin-Bona-Mahony type equation. Besides the well known smooth and positive solitary wave with large wave speed, we present the existence of smooth negative solitary waves having small wave speed. The spectral stability is then determined by analysing the behaviour of the associated linearized operator around the wave restricted to the orthogonal of the tangent space related to the momentum at the solitary wave. Since the analytical solution is not known, we generate the negative solitary waves numerically by using Petviashvili method. We also present some numerical experiments to observe the stability properties of solitary waves for various values of the order of nonlinearity and fractional derivative. Some remarks concerning the orbital stability are also celebrated.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1152-1169
Sayfa sayısı18
DergiNonlinearity
Hacim35
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - Mar 2022

Bibliyografik not

Publisher Copyright:
© 2022 IOP Publishing Ltd & London Mathematical Society.

Finansman

Goksu Oruc was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the grant 2211.

FinansörlerFinansör numarası
TUBITAK2211
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

    Parmak izi

    On the stability of solitary wave solutions for a generalized fractional Benjamin-Bona-Mahony equation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap