On the Rosenau equation: Lie symmetries, periodic solutions and solitary wave dynamics

Ali Demirci, Yasin Hasanoğlu, Gulcin M. Muslu*, Cihangir Özemir

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

3 Atıf (Scopus)

Özet

In this paper, we first consider the Rosenau equation with the quadratic nonlinearity and identify its Lie symmetry algebra. We obtain reductions of the equation to ODEs, and find periodic analytical solutions in terms of elliptic functions. Then, considering a general power-type nonlinearity, we prove the non-existence of solitary waves for some parameters using Pohozaev type identities. The Fourier pseudo-spectral method is proposed for the Rosenau equation with this single power type nonlinearity. In order to investigate the solitary wave dynamics, we generate the initial solitary wave profile by using the Petviashvili's method. Then the evolution of the single solitary wave and overtaking collision of solitary waves are investigated by various numerical experiments.

Orijinal dilİngilizce
Makale numarası102848
DergiWave Motion
Hacim109
DOI'lar
Yayın durumuYayınlandı - Şub 2022

Bibliyografik not

Publisher Copyright:
© 2021 Elsevier B.V.

Parmak izi

On the Rosenau equation: Lie symmetries, periodic solutions and solitary wave dynamics' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap