Özet
Let A ∈ Mn(ℤ) be an expanding matrix with |det(A)| = q and let K = {k1 ⋯ kq} ⊆ ℝn be a digit set. The set T =: T(A, K) = {∑i=1∞ A-i kji : kji ∈ K} ⊂ ℝn is called a self-affine tile if the Lebesgue measure of T is positive. In this note, we consider dilation equations of the form f(x) = ∑j=1q cjf(Ax - kj) with q = ∑j=1q cj, cj ∈ ℝ, and prove that this equation has a nontrivial Lp solution (1 ≤ p ≤ ∞) if and only if cj = 1 ∀j ∈ {1,...,q} and T is a tile.
Orijinal dil | İngilizce |
---|---|
Sayfa (başlangıç-bitiş) | 427-432 |
Sayfa sayısı | 6 |
Dergi | Turkish Journal of Mathematics |
Hacim | 25 |
Basın numarası | 3 |
Yayın durumu | Yayınlandı - 2001 |
Harici olarak yayınlandı | Evet |