On the convergence of operator splitting for the Rosenau–Burgers equation

Fatma Zürnacı*, Muaz Seydaoğlu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

6 Atıf (Scopus)

Özet

We present convergence analysis of operator splitting methods applied to the nonlinear Rosenau–Burgers equation. The equation is first splitted into an unbounded linear part and a bounded nonlinear part and then operator splitting methods of Lie-Trotter and Strang type are applied to the equation. The local error bounds are obtained by using an approach based on the differential theory of operators in Banach space and error terms of one and two-dimensional numerical quadratures via Lie commutator bounds. The global error estimates are obtained via a Lady Windermere's fan argument. Lastly, a numerical example is studied to confirm the expected convergence order.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1363-1382
Sayfa sayısı20
DergiNumerical Methods for Partial Differential Equations
Hacim35
Basın numarası4
DOI'lar
Yayın durumuYayınlandı - Tem 2019

Bibliyografik not

Publisher Copyright:
© 2019 Wiley Periodicals, Inc.

Parmak izi

On the convergence of operator splitting for the Rosenau–Burgers equation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap