On space-like class A surfaces in Robertson–Walker spacetimes

Burcu Bektaş Demirci*, Nurettin Cenk Turgay, Rüya Yeğin Şen

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

Özet

In this paper, we consider space-like surfaces in Robertson–Walker spacetimes (Formula presented.) with the comoving observer field (Formula presented.). We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential and normal parts of the unit vector field (Formula presented.), as naturally defined. First, we investigate space-like surfaces in (Formula presented.) satisfying that the tangent component of (Formula presented.) is an eigenvector of all shape operators, called class (Formula presented.) surfaces. Then, we get a classification theorem for space-like class (Formula presented.) surfaces in (Formula presented.). Also, we examine minimal space-like class (Formula presented.) surfaces in (Formula presented.). Finally, we give the parameterizations of space-like surfaces in (Formula presented.) when the normal part of the unit vector field (Formula presented.) is parallel.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)718-729
Sayfa sayısı12
DergiMathematische Nachrichten
Hacim298
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - Şub 2025

Bibliyografik not

Publisher Copyright:
© 2025 Wiley-VCH GmbH.

Parmak izi

On space-like class A surfaces in Robertson–Walker spacetimes' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap