On Some Quasi-Einstein and 2-Quasi-Einstein Manifolds

Ryszard Deszcz, Małgorzata Głogowska, Marian Hotlos, Zerrin Şentürk*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

The tensor R · C − C · R and the tensors Q(g, R), Q(S, R), Q(g, C) and Q(S, C) of every Einstein manifold (M, g), n ≥ 4, satisfy R · C − C · R = (κ/((n − 1)n)) Q(g, R) = (κ/((n − 1)n)) Q(g, C) = (1/(n − 1)) Q(S, R) = (1/(n − 1)) Q(S, C). Motivated by this we study curvature properties of non-Einstein and non-conformally flat semi-Riemannian manifolds of dimension ≥ 4 satisfying the following family of generalized Einstein metric conditions: the tensor R· C − C · R is a linear combination of the tensors Q(g, R), Q(S, R), Q(g, C), Q(S, C), Q(g, g ∧ S ) and Q(S, g ∧ S ). We present results on quasi-Einstein and 2-quasi-Einstein warped product manifolds satisfying particular conditions of these family of conditions.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı5th International Conference of Mathematical Sciences, ICMS 2021
EditörlerHuseyin Cakalli, Ljubisa D. R. Kocinac, Allaberen Ashyralyev, Robin Harte, Mehmet Dik, Ibrahim Canak, Hacer Sengul Kandemir, Mujgan Tez, Ozay Gurtug, Ekrem Savas, Nazlim Deniz Aral, Filiz Cagatay Ucgan, Onder Sahinaslan, Charyyar Ashyralyyev, Sefa Anil Sezer, Arap Duran Turkoglu, Oruc Raif Onvural, Hakan Sahin
YayınlayanAmerican Institute of Physics Inc.
ISBN (Elektronik)9780735442580
DOI'lar
Yayın durumuYayınlandı - 7 Kas 2022
Etkinlik5th International Conference of Mathematical Sciences, ICMS 2021 - Istanbul, Turkey
Süre: 23 Haz 202127 Haz 2021

Yayın serisi

AdıAIP Conference Proceedings
Hacim2483
ISSN (Basılı)0094-243X
ISSN (Elektronik)1551-7616

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???5th International Conference of Mathematical Sciences, ICMS 2021
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot23/06/2127/06/21

Bibliyografik not

Publisher Copyright:
© 2022 American Institute of Physics Inc.. All rights reserved.

Parmak izi

On Some Quasi-Einstein and 2-Quasi-Einstein Manifolds' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap