On conservation forms and invariant solutions for classical mechanics problems of Liénard type

Gülden Gün Polat, Teoman Özer*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

1 Atıf (Scopus)

Özet

In this study we apply partial Noether and λ-symmetry approaches to a second-order nonlinear autonomous equation of the form y″ + f(y)y′ + g(y) = 0, called Liénard equation corresponding to some important problems in classical mechanics field with respect to f(y) and g(y) functions. As a first approach we utilize partial Lagrangians and partial Noether operators to obtain conserved forms of Liénard equation. Then, as a second approach, based on the λ-symmetry-method, we analyze λ-symmetries for the case that λ-function is in the form of λ(x, y, y′) = λ 1 (x, y)y′ + λ2 (x, y). Finally, a classification problem for the conservation forms and invariant solutions are considered.

Orijinal dilİngilizce
Makale numarası107895
DergiAdvances in Mathematical Physics
Hacim2014
DOI'lar
Yayın durumuYayınlandı - 2014

Bibliyografik not

Publisher Copyright:
Copyright © 2014 G. Gün Polat and T. Özer.

Parmak izi

On conservation forms and invariant solutions for classical mechanics problems of Liénard type' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap