Numerical solution for a general class of nonlocal nonlinear wave equations arising in elasticity

Gulcin M. Muslu*, Handan Borluk

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

5 Atıf (Scopus)

Özet

A class of nonlocal nonlinear wave equation arises from the modeling of a one dimensional motion in a nonlinearly, nonlocally elastic medium. The equation involves a kernel function with nonnegative Fourier transform. We discretize the equation by using Fourier spectral method in space and we prove the convergence of the semidiscrete scheme. We then use a fully-discrete scheme, that couples Fourier pseudo-spectral method in space and 4th order Runge-Kutta in time, to observe the effect of the kernel function on solutions. To generate solitary wave solutions numerically, we use the Petviashvili's iteration method.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1600-1610
Sayfa sayısı11
DergiZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
Hacim97
Basın numarası12
DOI'lar
Yayın durumuYayınlandı - Ara 2017

Bibliyografik not

Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Parmak izi

Numerical solution for a general class of nonlocal nonlinear wave equations arising in elasticity' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap