Novelty detection on metallic surfaces by GMM learning in Gabor space

Yigitcan Savran*, Bilge Gunsel

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

3 Atıf (Scopus)

Özet

Defect detection on painted metallic surfaces is a challenging task in inspection due to the varying illuminative and reflective structure of the surface. This paper proposes a novelty detection scheme that models the defect-free surfaces by using Gaussian Mixture Models (GMMs) trained in Gabor space. It is shown that training using the texture representations obtained by Gabor filtering takes the advantage of multiscale analysis while reducing the computational complexity. Test results reported on defected metallic surfaces including pinhole, crater, hav, dust, scratch, and mound type of abnormalities demonstrate the superiority of developed integrated system with respect to the stand alone Gabor filtering as well as the spatial domain GMM classification.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıImage Analysis and Recognition - 7th International Conference, ICIAR 2010, Proceedings
Sayfalar325-334
Sayfa sayısı10
BaskıPART 2
DOI'lar
Yayın durumuYayınlandı - 2010
Etkinlik7th International Conference on Image Analysis and Recognition, ICIAR 2010 - Povoa de Varzim, Portugal
Süre: 21 Haz 201023 Haz 2010

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SayıPART 2
Hacim6112 LNCS
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???7th International Conference on Image Analysis and Recognition, ICIAR 2010
Ülke/BölgePortugal
ŞehirPovoa de Varzim
Periyot21/06/1023/06/10

Parmak izi

Novelty detection on metallic surfaces by GMM learning in Gabor space' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap