Noncommutative fibrations

Atabey Kaygun*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

1 Atıf (Scopus)

Özet

We show that faithfully flat smooth extensions of associative unital algebras are reduced flat, and therefore, fit into the Jacobi-Zariski exact sequence in Hochschild homology and cyclic (co)homology even when the algebras are noncommutative or infinite dimensional. We observe that such extensions correspond to étale maps of affine schemes, and we propose a definition for generic noncommutative fibrations using distributive laws and homological properties of the induction and restriction functors. Then we show that Galois fibrations do produce the right exact sequence in homology. We then demonstrate the versatility of our model on a geometro-combinatorial example. For a connected unramified covering of a connected graph G' → G, we construct a smooth Galois fibration (Formula presented.) and calculate the homology of the corresponding local coefficient system.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)3384-3398
Sayfa sayısı15
DergiCommunications in Algebra
Hacim47
Basın numarası8
DOI'lar
Yayın durumuYayınlandı - 3 Ağu 2019

Bibliyografik not

Publisher Copyright:
© 2019, © 2019 Taylor & Francis Group, LLC.

Parmak izi

Noncommutative fibrations' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap