New conservation forms and lie algebras of ermakov-pinney equation

Ozlem Orhan, Teoman Ozer*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

3 Atıf (Scopus)

Özet

In this study, we investigate first integrals and exact solutions of the Ermakov-Pinney equation. Firstly, the Lagrangian for the equation is constructed and then the determining equations are obtained based on the Lagrangian approach. Noether symmetry classification is implemented, the first integrals, conservation laws are obtained and classified. This classification includes Noether symmetries and first integrals with respect to different choices of external potential function. Furthermore, the time independent integrals and analytical solutions are obtained by using the modified Prelle-Singer procedure as a different approach. Additionally, for the investigation of conservation laws of the equation, we present the mathematical connections between the λ-symmetries, Lie point symmetries and the modified Prelle-Singer procedure. Finally, new Lagrangian and Hamiltonian forms of the equation are determined.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)753-764
Sayfa sayısı12
DergiDiscrete and Continuous Dynamical Systems - Series S
Hacim11
Basın numarası4
DOI'lar
Yayın durumuYayınlandı - Ağu 2018

Parmak izi

New conservation forms and lie algebras of ermakov-pinney equation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap