Neural network application for fault detection in electric motors

Serhat Seker*, Ahmet H. Kayran

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

4 Atıf (Scopus)

Özet

This research describes the monitoring of the fundamental spectral features of the bearing damage through accelerated aging studies for induction motors with a power rating of 5 HP. For this aim, the bearing damage is characterized between 2-4 kHz through the spectral analysis methods applied to motor vibration signals. Also, coherence analysis approach, defined between the stator currents and vibration signals, is used for as another indicator of the bearing damage. After the computation of the coherences, a neuro-detector based on the auto-associative neural structure is trained in the frequency domain. Hence, the bearing damage detection is realized by observing the changes in the errors (residuals) generated by the neural net.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıAUPEC'09 - 19th Australasian Universities Power Engineering Conference
Ana bilgisayar yayını alt yazısıSustainable Energy Technologies and Systems
Yayın durumuYayınlandı - 2009
Etkinlik19th Australasian Universities Power Engineering Conference: Sustainable Energy Technologies and Systems, AUPEC'09 - Adelaide, Australia
Süre: 27 Eyl 200930 Eyl 2009

Yayın serisi

AdıAUPEC'09 - 19th Australasian Universities Power Engineering Conference: Sustainable Energy Technologies and Systems

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???19th Australasian Universities Power Engineering Conference: Sustainable Energy Technologies and Systems, AUPEC'09
Ülke/BölgeAustralia
ŞehirAdelaide
Periyot27/09/0930/09/09

Parmak izi

Neural network application for fault detection in electric motors' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap