Multi-stream Gaussian mixture model based facial feature localization

Kenichi Kumatani*, Hazim K. Ekenel, Hua Gao, Rainer Stiefelhagen, Aytül Erçil

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

5 Atıf (Scopus)

Özet

This paper presents a new facial feature localization system which estimates positions of eyes, nose and mouth corners simultaneously. In contrast to conventional systems, we use the multi-stream Gaussian mixture model (GMM) framework in order to represent structural and appearance information of facial features. We construct a GMM for the region of each facial feature, where the principal component analysis is used to extract each facial feature. We also build a GMM which represents the structural information of a face, relative positions of facial features. Those models are combined based on the multi-stream framework. It can reduce the computation time to search region of interest (ROI). We demonstrate the effectiveness of our algorithm through experiments on the BioID Face Database.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2008 IEEE 16th Signal Processing, Communication and Applications Conference, SIU
DOI'lar
Yayın durumuYayınlandı - 2008
Harici olarak yayınlandıEvet
Etkinlik2008 IEEE 16th Signal Processing, Communication and Applications Conference, SIU - Aydin, Turkey
Süre: 20 Nis 200822 Nis 2008

Yayın serisi

Adı2008 IEEE 16th Signal Processing, Communication and Applications Conference, SIU

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2008 IEEE 16th Signal Processing, Communication and Applications Conference, SIU
Ülke/BölgeTurkey
ŞehirAydin
Periyot20/04/0822/04/08

Parmak izi

Multi-stream Gaussian mixture model based facial feature localization' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap