TY - JOUR
T1 - Multi-model CNN fusion for sperm morphology analysis
AU - Yüzkat, Mecit
AU - Ilhan, Hamza Osman
AU - Aydin, Nizamettin
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/10
Y1 - 2021/10
N2 - Infertility is a common disorder affecting 20% of couples worldwide. Furthermore, 40% of all cases are related to male infertility. The first step in the determination of male infertility is semen analysis. The morphology, concentration, and motility of sperm are important characteristics evaluated by experts during semen analysis. Most laboratories perform the tests manually. However, manual semen analysis requires much time and is subject to observer variability during the evaluation. Therefore, computer-assisted systems are required. Additionally, to obtain more objective results, a large amount of data is necessary. Deep learning networks, which have become popular in recent years, are used for processing and analysing such quantities of data. Convolutional neural networks (CNNs) are a class of deep learning algorithm that are used extensively for processing and analysing images. In this study, six different CNN models were created for completely automating the morphological classification of sperm images. Additionally, two decision-level fusion techniques namely hard-voting and soft-voting were applied over these CNNs. To evaluate the performance of the proposed approach, three publicly available sperm morphology data sets were used in the experimental tests. For an objective analysis, a cross-validation technique was applied by dividing the data sets into five sub-sets. In addition, various data augmentation scales and mini-batch analysis were employed to obtain the highest classification accuracies. Finally, in the classification, accuracies 90.73%, 85.18% and 71.91% were obtained for the SMIDS, HuSHeM and SCIAN-Morpho data sets, respectively, using the soft-voting based fusion approach over the six created CNN models. The results suggested that the proposed approach could automatically classify as well as achieve high success in three different data sets.
AB - Infertility is a common disorder affecting 20% of couples worldwide. Furthermore, 40% of all cases are related to male infertility. The first step in the determination of male infertility is semen analysis. The morphology, concentration, and motility of sperm are important characteristics evaluated by experts during semen analysis. Most laboratories perform the tests manually. However, manual semen analysis requires much time and is subject to observer variability during the evaluation. Therefore, computer-assisted systems are required. Additionally, to obtain more objective results, a large amount of data is necessary. Deep learning networks, which have become popular in recent years, are used for processing and analysing such quantities of data. Convolutional neural networks (CNNs) are a class of deep learning algorithm that are used extensively for processing and analysing images. In this study, six different CNN models were created for completely automating the morphological classification of sperm images. Additionally, two decision-level fusion techniques namely hard-voting and soft-voting were applied over these CNNs. To evaluate the performance of the proposed approach, three publicly available sperm morphology data sets were used in the experimental tests. For an objective analysis, a cross-validation technique was applied by dividing the data sets into five sub-sets. In addition, various data augmentation scales and mini-batch analysis were employed to obtain the highest classification accuracies. Finally, in the classification, accuracies 90.73%, 85.18% and 71.91% were obtained for the SMIDS, HuSHeM and SCIAN-Morpho data sets, respectively, using the soft-voting based fusion approach over the six created CNN models. The results suggested that the proposed approach could automatically classify as well as achieve high success in three different data sets.
KW - Convolutional neural network (CNN)
KW - Data augmentation
KW - Decision level fusion
KW - Sperm morphology
UR - http://www.scopus.com/inward/record.url?scp=85114766868&partnerID=8YFLogxK
U2 - 10.1016/j.compbiomed.2021.104790
DO - 10.1016/j.compbiomed.2021.104790
M3 - Article
C2 - 34492520
AN - SCOPUS:85114766868
SN - 0010-4825
VL - 137
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
M1 - 104790
ER -