Modeling of heterogeneous Fenton process for dye degradation in a fluidized-bed reactor: Kinetics and mass transfer

Mahdi Ebrahimi Farshchi, Hassan Aghdasinia*, Alireza Khataee

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

52 Atıf (Scopus)

Özet

Natural pyrite catalysts were utilized in fluidized bed reactor for dye degradation in presence of hydrogen peroxide, which is famous to heterogeneous Fenton reaction. This process plays an important role in wastewater treatment processes and it is more effective when occurs in this kind of reactors. A novel kinetic model for Acid yellow 36 (AY36) degradation by heterogeneous Fenton process, in a fluidized bed reactor has been developed. By evaluating dissolved oxygen (DO) concentration in effluent during the process, a new parameter named effective reaction time is introduced, which could describe the relation of DO concentration and dye degradation, so the prediction of DO concentration by the model is of great importance toward the understanding of process performance. Neglecting mass transfer phenomenon from kinetic models eventuated in incorrect estimation, consequently, in this model, both reaction and mass transfer mechanism have been considered, which forecast the changes in effective factors like pH, DO concentration and dye removal efficiency simultaneously. The model results adequately coincide with the experimental results, which declare the validity of the modified kinetic model.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)644-653
Sayfa sayısı10
DergiJournal of Cleaner Production
Hacim182
DOI'lar
Yayın durumuYayınlandı - 1 May 2018
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2018 Elsevier Ltd

Parmak izi

Modeling of heterogeneous Fenton process for dye degradation in a fluidized-bed reactor: Kinetics and mass transfer' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap