Middle Anatolian Region short-term load forecasting using artificial neural networks

Ayesn Demiroren*, G. Ceylan

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

8 Atıf (Scopus)

Özet

In recent years, several studies of short-term load forecasting using different of artificial neural network structures have been reported. In this paper, an application of short-term load forecasting is investigated by multilayer perceptron structure. Actual load and temperature data of the Middle Anatolian Region in the years 2002 and 2003 are used for this investigation. In this study, maximum temperature, minimum temperature, and day type factors are used to construct the forecasting model. Also, load forecasting for the same region is obtained by the regression method to compare the effectiveness of the artificial neural network method.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)707-724
Sayfa sayısı18
DergiElectric Power Components and Systems
Hacim34
Basın numarası6
DOI'lar
Yayın durumuYayınlandı - 2006

Parmak izi

Middle Anatolian Region short-term load forecasting using artificial neural networks' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap