TY - JOUR
T1 - Markov chain-incorporated and synthetic data-supported conditional artificial neural network models for forecasting monthly precipitation in arid regions
AU - Aksoy, Hafzullah
AU - Dahamsheh, Ahmad
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/7
Y1 - 2018/7
N2 - For forecasting monthly precipitation in an arid region, the feed forward back-propagation, radial basis function and generalized regression artificial neural networks (ANNs) are used in this study. The ANN models are improved after incorporation of a Markov chain-based algorithm (MC-ANNs) with which the percentage of dry months is forecasted perfectly, thus generation of any non-physical negative precipitation is eliminated. Due to the fact that recorded precipitation time series are usually shorter than the length needed for a proper calibration of ANN models, synthetic monthly precipitation data are generated by Thomas-Fiering model to further improve the performance of forecasting. For case studies from Jordan, it is seen that only a slightly better performance is achieved with the use of MC and synthetic data. A conditional statement is, therefore, established and imbedded into the ANN models after the incorporation of MC and support of synthetic data, to substantially improve the ability of the models for forecasting monthly precipitation in arid regions.
AB - For forecasting monthly precipitation in an arid region, the feed forward back-propagation, radial basis function and generalized regression artificial neural networks (ANNs) are used in this study. The ANN models are improved after incorporation of a Markov chain-based algorithm (MC-ANNs) with which the percentage of dry months is forecasted perfectly, thus generation of any non-physical negative precipitation is eliminated. Due to the fact that recorded precipitation time series are usually shorter than the length needed for a proper calibration of ANN models, synthetic monthly precipitation data are generated by Thomas-Fiering model to further improve the performance of forecasting. For case studies from Jordan, it is seen that only a slightly better performance is achieved with the use of MC and synthetic data. A conditional statement is, therefore, established and imbedded into the ANN models after the incorporation of MC and support of synthetic data, to substantially improve the ability of the models for forecasting monthly precipitation in arid regions.
KW - Arid region
KW - Artificial neural networks
KW - Intermittent precipitation
KW - Markov chain
KW - Synthetic data
KW - Thomas-Fiering model
UR - http://www.scopus.com/inward/record.url?scp=85047543064&partnerID=8YFLogxK
U2 - 10.1016/j.jhydrol.2018.05.030
DO - 10.1016/j.jhydrol.2018.05.030
M3 - Article
AN - SCOPUS:85047543064
SN - 0022-1694
VL - 562
SP - 758
EP - 779
JO - Journal of Hydrology
JF - Journal of Hydrology
ER -