Marketing Campaign Management Using Machine Learning Techniques: An Uplift Modeling Approach

Meltem Sanisoğlu*, Tolga Kaya, Şebnem Burnaz

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

Companies regularly plan and implement marketing campaigns in order to increase their sales by communicating with the customers. Whether these marketing campaigns are effective and successful in persuading customers to engage in certain behaviors remain a question unanswered. Predicting customer behavior is not enough to drive and manage marketing actions optimally because it does not show the influence of the marketing action on the customers’ future behavior. Prescriptive analysis can offer better ways to guide marketing strategies. Uplift modeling promises a clear opportunity to diminish costs compared to traditional predictive analytics by simply maximizing the impact for any treatment decision where the objective is to apply an influence. The purpose of this paper is to suggest an uplift modeling framework in cross-sell marketing campaign management in telecommunications sector. Dataset used in this study includes demographic and behavioral characteristics of 21.439 customers comprising December 2020-January 2021 period. Using alternative machine learning techniques, we segmented the business customers of a leading telecommunication company into 4 groups as: persuadables, sure things, lost causes, do not disturbs.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent and Fuzzy Systems - Digital Acceleration and The New Normal - Proceedings of the INFUS 2022 Conference, Volume 2
EditörlerCengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, A. Cagri Tolga, Selcuk Cebi
YayınlayanSpringer Science and Business Media Deutschland GmbH
Sayfalar140-147
Sayfa sayısı8
ISBN (Basılı)9783031091759
DOI'lar
Yayın durumuYayınlandı - 2022
EtkinlikInternational Conference on Intelligent and Fuzzy Systems, INFUS 2022 - Izmir, Turkey
Süre: 19 Tem 202221 Tem 2022

Yayın serisi

AdıLecture Notes in Networks and Systems
Hacim505 LNNS
ISSN (Basılı)2367-3370
ISSN (Elektronik)2367-3389

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference on Intelligent and Fuzzy Systems, INFUS 2022
Ülke/BölgeTurkey
ŞehirIzmir
Periyot19/07/2221/07/22

Bibliyografik not

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Parmak izi

Marketing Campaign Management Using Machine Learning Techniques: An Uplift Modeling Approach' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap