Malaria Parasite Detection with Deep Transfer Learning

Esra Var, F. Boray Tek

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

15 Atıf (Scopus)

Özet

This study aims to aromatically detect malaria parasites (Plasmodium sp) on images taken from Giemsa stained blood smears. Deep learning methods provide limited performance when sample size is low. In transfer learning, visual features are learned from large general data sets, and problem-specific classification problem can be solved successfully in restricted problem specific data sets. In this study, we apply transfer learning method to detect and classify malaria parasites. We use a popular pre-trained CNN model VGG19. We trained the model for 20 epoch on 1428 P. Vivax, 1425 P. Ovale, 1446 P. Falciparum, 1450 P. Malariae and 1440 non-parasite samples. The transfer learning model achieves %80, %83, %86, %75 precision and 83%, 86%, 86%, 79% f-measure on 19 test images.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıUBMK 2018 - 3rd International Conference on Computer Science and Engineering
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar298-302
Sayfa sayısı5
ISBN (Elektronik)9781538678930
DOI'lar
Yayın durumuYayınlandı - 6 Ara 2018
Harici olarak yayınlandıEvet
Etkinlik3rd International Conference on Computer Science and Engineering, UBMK 2018 - Sarajevo, Bosnia and Herzegovina
Süre: 20 Eyl 201823 Eyl 2018

Yayın serisi

AdıUBMK 2018 - 3rd International Conference on Computer Science and Engineering

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???3rd International Conference on Computer Science and Engineering, UBMK 2018
Ülke/BölgeBosnia and Herzegovina
ŞehirSarajevo
Periyot20/09/1823/09/18

Bibliyografik not

Publisher Copyright:
© 2018 IEEE.

Parmak izi

Malaria Parasite Detection with Deep Transfer Learning' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap