Özet
This study aims to aromatically detect malaria parasites (Plasmodium sp) on images taken from Giemsa stained blood smears. Deep learning methods provide limited performance when sample size is low. In transfer learning, visual features are learned from large general data sets, and problem-specific classification problem can be solved successfully in restricted problem specific data sets. In this study, we apply transfer learning method to detect and classify malaria parasites. We use a popular pre-trained CNN model VGG19. We trained the model for 20 epoch on 1428 P. Vivax, 1425 P. Ovale, 1446 P. Falciparum, 1450 P. Malariae and 1440 non-parasite samples. The transfer learning model achieves %80, %83, %86, %75 precision and 83%, 86%, 86%, 79% f-measure on 19 test images.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | UBMK 2018 - 3rd International Conference on Computer Science and Engineering |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 298-302 |
Sayfa sayısı | 5 |
ISBN (Elektronik) | 9781538678930 |
DOI'lar | |
Yayın durumu | Yayınlandı - 6 Ara 2018 |
Harici olarak yayınlandı | Evet |
Etkinlik | 3rd International Conference on Computer Science and Engineering, UBMK 2018 - Sarajevo, Bosnia and Herzegovina Süre: 20 Eyl 2018 → 23 Eyl 2018 |
Yayın serisi
Adı | UBMK 2018 - 3rd International Conference on Computer Science and Engineering |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 3rd International Conference on Computer Science and Engineering, UBMK 2018 |
---|---|
Ülke/Bölge | Bosnia and Herzegovina |
Şehir | Sarajevo |
Periyot | 20/09/18 → 23/09/18 |
Bibliyografik not
Publisher Copyright:© 2018 IEEE.