Malaria parasite detection in peripheral blood images

F. Boray Tek, Andrew G. Dempster, Izzet Kale

Araştırma sonucu: Konferansa katkıYazıbilirkişi

76 Atıf (Scopus)

Özet

This paper investigates the possibility of computerised diagnosis of malaria and describes a method to detect malaria parasites (Plasmodium spp) in images acquired from Giemsa-stained peripheral blood samples using conventional light microscopes. Prior to processing, the images are transformed to match a reference image colour characteristics. The parasite detector utilises a Bayesian pixel classifier to mark stained pixels. The class conditional probability density functions of the stained and the non-stained classes are estimated using the non-parametric histogram method. The stained pixels are further processed to extract features (histogram, Hu moments, relative shape measurements, colour auto-correlogram) for a parasite/non-parasite classifier. A distance weighted K-nearest neighbour classifier is trained with the extracted features and a detailed performance comparison is presented. Our method achieves 74% sensitivity, 98% specificity, 88% positive prediction, and 95% negative prediction values for the parasite detection.

Orijinal dilİngilizce
Sayfalar347-356
Sayfa sayısı10
Yayın durumuYayınlandı - 2006
Harici olarak yayınlandıEvet
Etkinlik2006 17th British Machine Vision Conference, BMVC 2006 - Edinburgh, United Kingdom
Süre: 4 Eyl 20067 Eyl 2006

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2006 17th British Machine Vision Conference, BMVC 2006
Ülke/BölgeUnited Kingdom
ŞehirEdinburgh
Periyot4/09/067/09/06

Parmak izi

Malaria parasite detection in peripheral blood images' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap