Makine öǧrenmesi ve kesirli kalkülüs uygulamalari ile karşilaştirmali elektrik yük tahmini

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Forecasting short-term electrical loads is crucial for power supply system management, sustainability and upkeep. There are two main objectives for this study. First, it seeks to provide a thorough comparison of deep learning and machine learning techniques while forecasting for 1-h-ahead and 1-d-ahead. To remove any disruptions from the time series and comprehend its dynamics, the study also concentrates on mathematically modelling electricity load data using fractional calculus.

Tercüme edilen katkı başlığıComparative Electrical Load Prediction with Machine Learning and Fractional Calculus Applications
Orijinal dilTürkçe
Ana bilgisayar yayını başlığıElectrical-Electronics and Biomedical Engineering Conference, ELECO 2024 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798331518035
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik2024 Electrical, Electronics and Biomedical Engineering Conference at 15th National Conference on Electrical and Electronics Engineering, ELECO 2024 - Bursa, Turkey
Süre: 28 Kas 202430 Kas 2024

Yayın serisi

AdıElectrical-Electronics and Biomedical Engineering Conference, ELECO 2024 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2024 Electrical, Electronics and Biomedical Engineering Conference at 15th National Conference on Electrical and Electronics Engineering, ELECO 2024
Ülke/BölgeTurkey
ŞehirBursa
Periyot28/11/2430/11/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

Makine öǧrenmesi ve kesirli kalkülüs uygulamalari ile karşilaştirmali elektrik yük tahmini' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap