Makine Öǧrenme Yöntemleri ile Kredi Risk Analizi

Sacide Kalayci, Mustafa Kamasak, Secil Arslan

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

10 Atıf (Scopus)

Özet

In credit risk analysis, besides assessing risk of credit applications, taking decision by foreseeing risk of active credit is very important to decrease risk of financial institutions. In Turkey, recent studies reveal that for financial institutions, risk of SME credits is higher than other credit types such as consumer and corporate. Therefore, this paper focuses on predicting SME customer status for period of six months by utilizing application scoring additional to customer behaviour features. By utilizing Random Forest, Neural Networks, Support Vector Machines and Gradient Boosting, performance comparison and also feature analysis for customer behaviour are conducted. Finally, conducted experiments show that utilizing Stacked Generalization methods has positive effect on performance of SME credit risk analysis.

Tercüme edilen katkı başlığıCredit risk analysis using machine learning algorithms
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı26th IEEE Signal Processing and Communications Applications Conference, SIU 2018
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar1-4
Sayfa sayısı4
ISBN (Elektronik)9781538615010
DOI'lar
Yayın durumuYayınlandı - 5 Tem 2018
Etkinlik26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 - Izmir, Turkey
Süre: 2 May 20185 May 2018

Yayın serisi

Adı26th IEEE Signal Processing and Communications Applications Conference, SIU 2018

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???26th IEEE Signal Processing and Communications Applications Conference, SIU 2018
Ülke/BölgeTurkey
ŞehirIzmir
Periyot2/05/185/05/18

Bibliyografik not

Publisher Copyright:
© 2018 IEEE.

Keywords

  • Gradient boosting
  • Neural network
  • Random forest
  • SME credit risk analysis
  • Stacked generalization
  • Support vector machines

Parmak izi

Makine Öǧrenme Yöntemleri ile Kredi Risk Analizi' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap