Link prediction in evolving heterogeneous networks using the NARX neural networks

Alper Ozcan*, Sule Gunduz Oguducu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

37 Atıf (Scopus)

Özet

In this article, we propose a novel multivariate method for link prediction in evolving heterogeneous networks using a Nonlinear Autoregressive Neural Network with External Inputs (NARX). The proposed method combines (1) correlations between different link types; (2) the effects of different topological local and global similarity measures in different time periods; (3) nonlinear temporal evolution information; (4) the effects of the creation, preservation or removal of the links between the node pairs in consecutive time periods. We evaluate the performance of link prediction in terms of different AUC measures. Experiments on real networks demonstrate that the proposed multivariate method using NARX outperforms the previous temporal methods using univariate time series in different test cases.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)333-360
Sayfa sayısı28
DergiKnowledge and Information Systems
Hacim55
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - 1 May 2018

Bibliyografik not

Publisher Copyright:
© 2017, Springer-Verlag London Ltd.

Finansman

https://delicious.com/ which is collected as part of a research project (110E027) supported by Technological Research Council of Turkey (TUBITAK).

FinansörlerFinansör numarası
TUBITAK
Technological Research Council of Turkey

    Parmak izi

    Link prediction in evolving heterogeneous networks using the NARX neural networks' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap