Linear canonical transformations and quantum phase: A unified canonical and algebraic approach

T. Hakioǧlu*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

13 Atıf (Scopus)

Özet

The algebra of generalized linear quantum canonical transformations is examined in the perspective of Schwinger's unitary-canonical operator basis. Formulation of the quantum phase problem within the theory of quantum canonical transformations and in particular with the generalized quantum action-angle phase space formalism is established and it is shown that the conceptual foundation of the quantum phase problem lies within the algebraic properties of the canonical transformations in the quantum phase space. The representations of the Wigner function in the generalized action-angle unitary operator pair for certain Hamiltonian systems with dynamical symmetry is examined. This generalized canonical formalism is applied to the quantum harmonic oscillator to examine the properties of the unitary quantum phase operator as well as the action-angle Wigner function.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)4111-4130
Sayfa sayısı20
DergiJournal of Physics A: Mathematical and General
Hacim32
Basın numarası22
DOI'lar
Yayın durumuYayınlandı - 4 Haz 1999
Harici olarak yayınlandıEvet

Parmak izi

Linear canonical transformations and quantum phase: A unified canonical and algebraic approach' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap