Lie Symmetries and traveling wave solutions of the 3D Benney–Roskes/Zakharov–Rubenchik system

Şeyma Gönül*, Cihangir Özemir

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

3 Atıf (Scopus)

Özet

We analyze the Benney–Roskes/Zakharov–Rubenchik system in space dimension three from group-theoretical point of view. We find that the Lie symmetry algebra of the system is infinite-dimensional. Concentrating on traveling solutions, we find wave components of sech−tanh type, which proceed as line solitons and kinks in two-dimensional cross-sections in space.

Orijinal dilİngilizce
Makale numarası112807
DergiChaos, Solitons and Fractals
Hacim165
DOI'lar
Yayın durumuYayınlandı - Ara 2022

Bibliyografik not

Publisher Copyright:
© 2022 Elsevier Ltd

Finansman

The authors express their sincere gratitude to the anonymous referee for careful evaluation and comments on the article, which substantially improved the presentation of the paper.

Parmak izi

Lie Symmetries and traveling wave solutions of the 3D Benney–Roskes/Zakharov–Rubenchik system' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap